# **ROBUST MULTI-OBJECTIVE FILTERING FOR A CLASS OF NEUTRAL SYSTEM WITH BOUNDED NOISE AND PARAMETRIC UNCERTAINTY**

# XUE-JUN LI<sup>1,2</sup>, HONG CHEN<sup>1</sup>, SHU-YOU YU<sup>1</sup>

<sup>1</sup> Department of Control Science and Engineering, Jilin University, Campus NanLing, Renmin Str.142, 130025, China <sup>2</sup> Electronic Engineering College, Changchun University, Changchun 130022, China E-MAIL: yulgju@126.com, yulgju@sina.com

#### Abstract:

This paper considers a robust  $H_{\infty}$  filtering problem for a class of neutral delay differential uncertain systems with polytope type uncertainty. The main purpose is to obtain a stable linear filter such that the filtering error system remains robustly stable within a pre-specific  $H_{\infty}$  attenuation level or minimum  $H_{\infty}$  attenuation level  $\gamma$ . Sufficient conditions are stated in terms of LMIs. Based on the LMI toolbox, the solutions of the inequalities are obtained. Moreover, as an improvement, the filtering error system dynamics can be constrained to some specific LMI regions. The validity of proposed filter design algorithm has been checked through a numerical example.

Keywords:

Uncertainty; Neutral delay system; Filtering; Linear matrix inequality; Pole constraint

#### 1. Introduction

The problem of state estimation and filtering for system has been one of the fundamental issues in the control area. There has been a lot of interest on the problem of robust  $H_{\infty}$  filtering for dynamics systems subject to unknown but bounded noise and parameters uncertainty affecting possibly every system matrix. Several approaches exist in the literature up to this data, e.g., the stochastic approach (Kalman filtering theory),  $H_{\infty}$  filtering theory and deterministic, or set-membership, approach. In the extensively studied  $H_{\infty}$  filtering, the exogenous input signal is assumed to be energy bounded rather than Gaussian, and the filter is designed such that the worst case "gain" of the system is minimized [1,2]. On the other hand, delay equation/systems arising a variety of fields, such as biology electro-dynamics, have received considerable attention. The theory of neutral delay differential systems is both theoretical and practical interest<sup>[3,4]</sup>. The stability analysis for neutral delay differential of various types has been extensively studied<sup>[5,6]</sup>. Various methods have been introduced to derive less conservative and concise stability criteria for neutral system<sup>[7,8]</sup>. The  $H_{\infty}$  filtering problem for a class of neutral systems has been also investigated in Park papers<sup>[8,9]</sup>. But it has not been fully investigated and remains to be important and challenging.

In the literature, two kinds of uncertainties in the parameters have been studied, i.e., the norm bounded uncertainties and the convex polytopic ones. Subject to the latter case, the problem of robust  $H_{\infty}$  filtering for neutral delay differential systems is investigated in this paper. Moreover, as an improvement, robust pole placement specifications is considered, that ensures fast and well-damped transient response etc. By using Lyapunov functional technique combined with linear matrix inequalities technique, the problems to be addressed are the robust  $H_{\infty}$  filtering problem ( $P_{\infty}$ ) and the robust  $H_{\infty}$  filtering with pole placement constraint ( $P_{\infty}^{R}$ ).

•  $P_{\infty}$  designs a stable linear filter ensuring the error system asymptotically stable and finding a minimized or pre-specified positive attenuation level  $\gamma$ ,

$$\sup_{\substack{\xi l_2[0,\infty)}} \frac{\left\| z_e(t) \right\|_2}{\left\| \omega(t) \right\|_2} < \gamma \tag{1}$$

with poly type parameters uncertainties.

*m* 

•  $P_{\infty}^{R}$  determine a stable linear filter ensuring (1) and all eigenvalues of matrix  $A_{e}$  are inside some particular region of the complex plane.

## 2. Problem formulation

Consider a class of neutral differential system of the form:

## 1-4244-0060-0/06/\$20.00 ©2006 IEEE

W

$$\dot{x}(t) = A_0 x(t) + A_1 x(t-h) + A_2 \int_{t-\tau}^t x(s) ds + A_3 \dot{x}(t-\varepsilon) + Bw(t)$$

$$y(t) = C_y x(t) + D_y w(t)$$

$$z(t) = C_z x(t)$$

$$x(t_0 + \theta) = \phi(\theta) \quad \forall \theta \in [-H, 0]$$
(2)

where  $x(t) \in \mathbb{R}^n$  is the state vector,  $w(t) \in \mathbb{R}^m$  is the disturbance signal in  $L_2$ ,  $y(t) \in \mathbb{R}^l$  is the measured output,  $z(t) \in \mathbb{R}^q$  is the estimated state vectors,  $h, \tau$  and  $\varepsilon$  are the positive constant time delays,  $H = \max\{h, \tau, \varepsilon\}, \phi(\theta) \in L_0$  is the initial vector, where  $L_0$  is a set of all continuous differentiable function on [-H, 0] to  $\mathbb{R}^n$ . The system matrices  $A_0, A_1, A_2, A_3$ ,  $B, C_y, D_y, C_z$  are assumed to be unknown (uncertain) but belonging to a known convex compact set of polytopic type, i.e.

$$D = \{(A_0, A_1, A_2, A_3, B, C_y, D_y, C_z) \\ = \sum_{i=1}^{l} \tau_i(A_{0i}, A_{1i}, A_{2i}, A_{3i}, B_i, C_{yi}, D_{yi}, C_{zi}); \tau_i \ge 0; \sum_{i=1}^{l} \tau_i = 1\}$$
(3)

This kind of convex bounded parameter uncertainties has been fairly investigated in [2]. In this paper, the aim is to design a robust  $H_{\infty}$  filtering to estimate the unmeasured signal z(t) and the  $H_{\infty}$  norm of filtering error system is minimized or less than a prescribed  $\gamma$  attenuation level. For that, a stable linear filter describes:

$$\dot{\hat{x}}(t) = A_f \hat{x}(t) + A_1 \hat{x}(t-h) + A_2 \int_{t-\tau}^t \hat{x}(s) ds + A_3 \dot{\hat{x}}(t-\varepsilon) + B_f y(t)$$
$$\hat{x}(0) = 0, \quad s \in [-H, 0]$$
(4)

where  $\hat{x}(t) \in \mathbb{R}^n$  denotes the state estimation and  $A_f, B_f$  are the filter parameters to be determined. The state of estimation error define as  $\overline{x}(t) = x(t) - \hat{x}(t)$ . Refine the augmented state vector as

$$x_e(t) = \begin{bmatrix} x(t) \\ \overline{x}(t) \end{bmatrix},$$

$$z_e(t) = z(t) - \hat{z}(t) ,$$

such that the filtering error dynamics can be written as the following:

$$\dot{x}_{e}(t) = A_{e}x_{e}(t) + A_{1e}x_{e}(t-h) + A_{2e}\int_{t-\tau}^{\tau} x_{e}(s)ds$$

$$+ A_{3e}\dot{x}_{e}(t-\varepsilon) + B_{e}w(t)$$

$$z_{e}(t) = C_{e}x_{e}(t) + D_{e}w(t)$$
(6)

here 
$$A_e = \begin{bmatrix} A_0 & 0 \\ A_0 - B_f C_y - A_f & A_f \end{bmatrix}$$
,  
 $A_{1e} = \begin{bmatrix} A_1 & 0 \\ 0 & A_1 \end{bmatrix}$ ,  $A_{2e} = \begin{bmatrix} A_2 & 0 \\ 0 & A_2 \end{bmatrix}$ ,  $A_{3e} = \begin{bmatrix} A_3 & 0 \\ 0 & A_3 \end{bmatrix}$ ,  
 $B_e = \begin{bmatrix} B \\ B - B_f D_y \end{bmatrix}$ ,  $C_e = \begin{bmatrix} 0 & C_z \end{bmatrix}$ .

Here, the  $H_{\infty}$  performance is defined as :

$$J = \int_0^\infty [z_e^T(t)z(t) - \gamma^2 w^T(t)w(t)]dt$$
<sup>(7)</sup>

#### 3. Robust *H* filtering

In this section using the Lyapunov stability theory, we present the robust  $H_{\infty}$  filter design method of neutral differential systems with uncertainties, which belong to the polytopic uncertainty. Before designing the  $H_{\infty}$  filter, we introduce the useful lemmas.

Lemma 1 (D. Yue, S. Won and O. Kwon [3]) For positive scalar h,  $\tau$  and  $\mathcal{E}$  and  $E_1, E_2, E_3 \in \mathbb{R}^{n \times n}$ , the operator  $D(x_t): L_0 \to \mathbb{R}^n$  defined by

$$D(x_t) = x(t) + E_1 \int_{t-h}^t x(s) ds + E_2 \int_{t-\tau}^t (s-t-\tau) x(s) ds$$
$$-E_3 x(t-\varepsilon)$$
(8)

The operator  $D(x_t): L_0 \to \mathbb{R}^n$  is stable if there exist a positive definite matrix  $\Gamma$  and positive scalars  $\alpha_1, \alpha_2$  and  $\alpha_3$  such that

$$\begin{bmatrix} E_3^T \Gamma E_3 - a_1 \Gamma & h E_3^T \Gamma E_1 & \tau E_3^T \Gamma E_2 \\ * & h^2 E_1^T \Gamma E_1 - a_2 \Gamma & \tau E_1^T \Gamma E_2 \\ * & * & \tau^2 E_2^T \Gamma E_2 - \frac{3\alpha_3 \Gamma}{\tau^2} \end{bmatrix} < 0$$

$$\alpha_1 + \alpha_2 + \alpha_3 < 1 \qquad (9)$$

Lemma 2: (J.Park [5]) For any constant symmetric positive-definite matrix  $\Psi$ , a scalar  $\sigma$ , and the vector function  $\varphi[0, \sigma] \rightarrow R^m$  such that the integrations in the following are well defined, then

$$\sigma \int_{0}^{\sigma} \varphi^{T}(s) \Psi \varphi(s) \ge \left( \int_{0}^{\sigma} \varphi(s) ds \right)^{T} \psi \left( \int_{0}^{\sigma} \varphi(s) ds \right)$$
(10)

Thus, the filtering error system (5) can be rewritten in the following form:

$$\frac{d}{dt}(x_{e}(t) + A_{1e}\int_{t-h}^{t} x_{e}(s)ds - A_{3e}x_{e}(t-\varepsilon)$$

$$+A_{2e}\int_{t-\tau}^{t} (s-t+\tau)x_{e}(s)ds) = Ax_{e}(t) + B_{e}w(t).$$
(11)
With  $A = A_{e} + A_{1e} + \tau A_{2e}.$ 

Define the operator  $D(x_{et}): l_0 \to R^n$  as

$$D(x_{et}) = x_e(t) + A_{1e} \int_{t-h}^{t} x_e(s) ds - A_{3e} x_e(t-\varepsilon) + A_{2e} \int_{t-\tau}^{t} (s-t+\tau) x_e(s) ds$$
(12)

In Park work[5], a robust  $H_{\infty}$  filter for nominal neutral delay differential system is developed that makes the filtering error system asymptotically stable and the gives the up bound  $H_{\infty}$  norm of the  $T_{we}$ . In that reference, the input signal is assumed to be arbitrary deterministic signal of bounded energy and the parameters of neutral system are precisely known. This means the system is nominal. Similarly to the Theorem 2 of the Park [5], a robust  $H_{\infty}$  performance and one with pole placement constraint for neutral systems with parameter uncertainties are developed in this paper.

In the following Theorem, the asymptotic stability and a criterion for the existence of a robust linear stable filter assuring a robust  $H_{\infty}$  performance are established.

Based on the Lemma 1, the operator  $D(x_{et})$  of the filtering error system (5) is stable if there exists a positive definite matrix H and scalars  $a_1$  and  $a_2$  such that

Г

$$\begin{vmatrix} A_{3e}^{T}\Gamma A_{3e} - a_{1}\Gamma & hA_{3e}^{T}\Gamma A_{1e} & \tau A_{3e}^{T}\Gamma A_{2e} \\ * & h^{2}A_{1e}^{T}\Gamma A_{1e} - a_{2}\Gamma & \tau A_{1e}^{T}\Gamma A_{2e} \\ * & * & \tau^{2}A_{2e}^{T}\Gamma A_{2e} - \frac{3\alpha_{3}\Gamma}{\tau^{2}} \end{bmatrix} < 0$$

$$(13a)$$

$$\alpha_{1} + \alpha_{2} + \alpha_{3} < 0$$

$$\forall (A_{0}, A_{1}, A_{2}, A_{3}, B, C_{v}, D_{v}, C_{z}) \in D$$

According to the Lyapunov stable theory, the asymptotic stability of the filtering error system, for all  $\forall (A_0, A_1, A_2, A_3, B, C_y, D_y, C_z) \in D$  is established in the following Theorem.

Theorem 1: For the given neutral delay uncertainty system (3) with delay time scalars  $h > 0, \tau > 0$  and

 $\varepsilon > 0$ . Suppose that the operator  $D(x_{et})$  is stable. If there exist the positive definite  $P_1, P_2, Y_1, Y_3, S_1, S_3, H_1, H_3, \gamma$  and mtrices  $M_1, M_2, S_2, Y_2, H_2$  satisfying the following LMIs:

|   | Ω        | $\prod_{i}$ | $\tau A_i^T P_1 A$ | 7 <i>i</i> | $\Omega_{\lambda_i}$        | $-A_i^{T}$ | $P_1A_{3i}$         | -Ω       | $A_{3i}$             |       |
|---|----------|-------------|--------------------|------------|-----------------------------|------------|---------------------|----------|----------------------|-------|
|   | *        | $\prod_{2}$ | 0                  |            | $\Omega_{A_{i}}$            | 0          | 1 50                | -Ω       | $A_{3i}$             |       |
|   | *        | *           | $H_1$              |            | $-H_2$                      | 0          |                     | 0        |                      |       |
|   | *        | *           | *                  |            | $-H_3$                      | 0          |                     | 0        |                      |       |
|   | *        | *           | *                  |            | *                           | $-S_1$     |                     | $-S_{2}$ | ,                    |       |
|   | *        | *           | *                  |            | *                           | *          |                     | $-S_{2}$ |                      |       |
|   | *        | *           | *                  |            | *                           | *          |                     | *        | ,                    |       |
|   | *        | *           | *                  |            | *                           | *          |                     | *        |                      |       |
|   | *        | *           | *                  |            | *                           | *          |                     | *        |                      |       |
|   | *        | *           | *                  |            | *                           | *          |                     | *        |                      |       |
|   | *        | *           | *                  |            | *                           | *          |                     | *        |                      |       |
|   | $hA^T F$ | $PA_{i}$    | $h\Omega_A_{i}$    | $P_1$      | B,                          |            | 0                   |          | 0                    | ]     |
|   | 0        | 1 1/        | $h\Omega A_{i}$    | $P_{2}$    | $B_i - M_2$                 | $D_{ii}$   | 0                   |          | 0                    |       |
|   | 0        |             | 0                  | 0          | 1 2                         | yı         | 0                   |          | 0                    |       |
|   | 0        |             | 0                  | 0          |                             |            | 0                   |          | 0                    |       |
|   | 0        |             | 0                  | -/         | $A_{3i}^T P_1 B_i$          |            | 0                   |          | 0                    |       |
|   | 0        |             | 0                  | П          | 4                           |            | 0                   |          | 0                    | <0    |
|   | $-Y_1$   |             | $-Y_2$             | h/         | $\mathbf{I}_{1i}^T P_1 B_i$ |            | 0                   |          | 0                    |       |
|   | *        |             | $-Y_3$             | Π          | 3                           |            | 0                   |          | 0                    |       |
|   | *        |             | *                  | -)         | //                          |            | $\tau B_i^T P_1$    | $A_{2i}$ | $\Omega_{\!\!\!\!4}$ |       |
|   | *        |             | *                  | *          |                             |            | $-H_1$              |          | $-H_2$               |       |
|   | *        |             | *                  | *          |                             |            | *                   |          | $-H_3$               |       |
|   |          |             |                    |            |                             |            |                     |          | (                    | (14a) |
|   | $Y_1$    | $Y_2$       | >0.                | $S_1$      | $S_2$                       | > 0        | $\int H$            | 1        | $H_2$                | > 0   |
| _ | $Y_2^T$  | $Y_3$       | , L                | $S_2^T$    | $S_3$                       | • ;        | $\lfloor H \rfloor$ | 1<br>2   | $H_3 \rfloor$        | ~     |
|   |          |             |                    |            |                             |            |                     |          | (                    | (14b) |

 $\forall (A_0, A_1, A_2, A_3, B, C_v, D_v, C_z) \in D$ 

then the filtering error system (5,6) is asymptotically stable and satisfies the robust  $H_{\infty}$  filtering problem  $P_{\infty}$  when the parameters of system(3) belong to the poly type uncertainties. The filter is a robust  $H_{\infty}$  filter and determined

Г

r t

by:

$$A_f = P_2^{-1} M_1$$
 (15a)  
 $B_f = P_2^{-1} M_2$  (15b)

Where

$$\begin{split} \Omega_{1} &= P_{1}A_{i} + A_{i}^{T}P_{1} + Y_{1} + S_{1} + \frac{1}{2}\tau^{2}H_{1} \\ \Omega_{2} &= A_{0i}^{T}P_{2} - C_{yi}^{T}M_{2}^{T} - M_{1}^{T} \\ \Omega_{3} &= A_{1i}^{T}P_{2} + \tau A_{2i}^{T}P_{2} + M_{1}^{T} \\ \Omega_{4} &= \tau B_{i}^{T}P_{2}A_{2i} - \tau D_{yi}^{T}M_{2}^{T}A_{2i} \\ \Pi_{1} &= \Omega_{2} + Y_{2} + S_{2} - \tau^{2}H_{2} \\ \Pi_{2} &= \Omega_{3} + \Omega_{3}^{T} + Y_{3} + S_{3} + \tau^{2}H_{3} + C_{zi}^{T} + C_{zi} \\ \Pi_{3} &= hA_{1i}^{T}P_{2}B_{i} - hA_{1i}^{T}M_{2}D_{yi} \\ \Pi_{4} &= -A_{3i}^{T}P_{2}B_{i} + A_{3i}^{T}M_{2}D_{yi} \end{split}$$

 $A_{i} = A_{0i} + A_{1i} + \tau A_{2i}$ 

*Proof* : Consider the following legitimate Lyapunov function:

$$V(t, x_{e}(t)) = D^{T}(x_{et})PD(x_{et}) + \int_{t-h}^{t} (s-t+h)x_{e}^{T}(s)$$
$$Yx_{e}(s)d(s) + \frac{1}{2}\int_{t-\tau}^{t} (s-t+\tau)x_{e}^{T}(s)Hx_{e}(s)d(s)$$
$$+ \int_{t-\varepsilon}^{t} x_{e}^{T}(s)Sx_{e}(s)d(s)$$
(16)

where P > 0, Y > 0, S > 0, H > 0. Obviously  $V(t, x_e(t))$  is positive definite. Based on the Lyapunov stability theorem, if  $\frac{dy}{dt}(t, x_e(t))$  is semi-negative for  $\forall t > 0$ , then the system is asymptotically stable. Based on the operator (12),

$$\frac{dV}{dt}(t, x_{e}(t)) = 2x_{e}^{T}(t)A^{T}P\{x_{e}(t) + A_{1e}\int_{t-h}^{t} x_{e}(s)ds$$
  
$$-A_{3e}x_{e}(t-\varepsilon) + A_{2e}\int_{t-\tau}^{t} (s-t+\tau)x_{e}(s)ds\}$$
  
$$-\int_{t-h}^{t} x_{e}^{T}(s)Yx_{e}(s)ds - x_{e}^{T}(t-\varepsilon)Sx_{e}(t-\varepsilon)$$
  
$$+\frac{1}{2}\tau^{2}x_{e}^{T}(t)Hx_{e}(t) + hx_{e}^{T}(t)Yx_{e}(t)$$
  
$$+x_{e}^{T}(t)Sx_{e}(t) - \int_{t-\tau}^{t} x_{e}^{T}(s)Hx_{e}(s)ds$$
(17)

Using Lemma 2, the following form is obtained

$$\int_{t-h}^{t} x_{e}^{t}(s) Y x_{e}(s) ds$$

$$\geq (\frac{1}{h} \int_{t-h}^{t} x_{e}(s) ds)^{T} (hY) (\frac{1}{h} \int_{t-h}^{t} x_{e}(s) ds)$$
And
$$2 x_{e}^{T}(t) A^{T} P A_{2e} \int_{t-\tau}^{t} (s-t+\tau) x_{e}(s) ds$$

$$\leq \int_{t-\tau}^{t} (s-t+\tau) [2 x_{e}^{T}(s) A^{T} P A_{2e}^{T} H^{-1} A_{2e} P A x_{e}(s)$$

$$+ \frac{1}{2} x_{e}^{T}(s) H x_{e}(s)] ds \leq \tau^{2} x_{e}^{T}(t) A^{T} P A_{2e}^{T} H^{-1} A_{2e} P A x_{e}(t)$$

$$+ \frac{1}{2} \int_{t-\tau}^{t} (s-t+\tau) x_{e}^{T} H x_{e}(s) ds$$
(19)

Substituting (18) and (19) into  $\frac{dV}{dt}(t, x_e(t))$ , the following is hold.

$$\frac{dV}{dt}(t, x_e(t)) \leq x_e^T(t)(PA + A^T P + hY + S)$$

$$+ \frac{1}{2}\tau^2 H + \tau^2 A^T P A_{2e}^T H^{-1} A_{2e} P A) x_e(t)$$

$$+ 2x_e^T(t) A^T P A_{1e} \int_{t-h}^t x_e(s) ds - 2x_e^T(t) A^T P A_{3e} x_e(t-\varepsilon)$$

$$- x_e^T(t-\varepsilon) S x_e(t-\varepsilon) - (\frac{1}{h} \int_{t-h}^t x_e(s) ds)^T$$

$$(hY)(\frac{1}{h} \int_{t-h}^t x_e(s) ds) - \frac{1}{2} \int_{t-\tau}^t (s-t+\tau) x_e^T H x_e(s) ds$$

$$(20)$$

If  $\frac{dV}{dt} \le 0$ , the filtering error system(6) is stable.

The next we give the  $H_{\infty}$  performance for error system (6). When the filtering error system is stable, the states of error system  $x_e(t)$  tend to zero as  $t \to \infty$ . Now assuming zero initial conditions for the filtering error system, the  $H_{\infty}$  performance index is defined as following:

$$J = \int_{0}^{\infty} z_{e}^{T}(t) z_{e}(t) - \gamma^{2} w^{T}(t) w(t) + \dot{V}(x_{e}(t), t) dt$$

 $\forall w(t) \in L_2[0,\infty]$ , which is bounded energy stochastic signal. When J < 0, the  $L_2$  gain of filtering error system (6) is smaller than  $\gamma$ . Based on the legitimate Lyapunov functional candidate (16), we can easily infer the  $H_{\infty}$ 

performance index J:

$$J \leq \int_{0}^{\infty} (x_{e}^{T}(t)C_{e}^{T}C_{e}x_{e} + x_{e}^{T}(t)(PA + A^{T}P + hY + S)$$

$$+ \frac{1}{2}\tau^{2}H + \tau^{2}A^{T}PA_{2e}^{T}H^{-1}A_{2e}PA)x_{e}(t)$$

$$+ 2x_{e}^{T}(t)A^{T}PA_{1e}\int_{t-h}^{t}x_{e}(s)ds - 2x_{e}^{T}(t)A^{T}PA_{3e}x_{e}(t-\varepsilon)$$

$$- x_{e}^{T}(t-\varepsilon)Sx_{e}(t-\varepsilon) - (\frac{1}{h}\int_{t-h}^{t}x_{e}(s)ds)^{T}$$

$$(hY)(\frac{1}{h}\int_{t-h}^{t}x_{e}(s)ds) - \frac{1}{2}\int_{t-\tau}^{t}(s-t+\tau)x_{e}^{T}Hx_{e}(s)ds$$

$$+ 2w^{T}(t)(-\gamma^{2} + \tau^{2}B_{e}^{T}PA_{2e}H^{-1}A_{2e}PB_{e})w(t))dt$$
Then the objective function equivalent to:
$$\int_{0}^{\infty} \left[\frac{x_{e}(t)}{x_{e}(t-\tau)} \frac{1}{t}A_{1}\int_{t-t}^{t}x_{e}(s)ds\right]^{T}M\left[\frac{x_{e}(t)}{x_{e}(t-\tau)} \frac{1}{t}A_{1}\int_{t-t}^{t}x_{e}(s)ds\right]dt \leq 0$$

w(t)

$$\begin{bmatrix} \phi_{1} & * & -A_{3e}^{T}PB_{e} & * \\ -A_{3e}^{T}PA & -S & * & * \\ hA_{1e}^{T}PA & 0 & -hY & * \\ B_{e}^{T}P & * & hB_{e}^{T}PA_{1e} & -\gamma^{2}I + \tau^{2}B_{e}^{T}PA_{2e}H^{-1}A_{2e}PB_{e} \end{bmatrix}$$
(23)
$$\phi_{1} = A^{T}P + PA + hY + S + C_{e}^{T}C_{e} + \frac{1}{2}\tau^{2}H$$

w(t)

(22)

$$+\tau^2 A^T P A_{2e}^T H^{-1} A_{2e} P A$$

J < 0 implies to M < 0. According to Shur completement and the parameters of the filtering error system, we define the

$$Y = \begin{bmatrix} Y_1 & Y_2^T \\ Y_2 & Y_3 \end{bmatrix} > 0, \qquad S = \begin{bmatrix} S_1 & S_2^T \\ S_2 & S_3 \end{bmatrix} > 0,$$
$$H = \begin{bmatrix} H_1 & H_2^T \\ H_2 & H_3 \end{bmatrix} > 0, \qquad P = \begin{bmatrix} P_1 & 0 \\ 0 & p_2 \end{bmatrix} > 0.$$

Substituting Y, S, H, P and A,  $A_{1e}$ ,  $A_{2e}$ ,  $A_{3e}$ ,  $B_e$ ,  $C_e$ ,  $D_e$  into (23) and making  $M_1 = P_2 B_f$ ,  $M_2 = P_2 A_f$ , applying Shur completement again, the LMI (14) for system with uncertainty (3) is obtained.

*Remark 1:* It is obviously that the LMI (14) is independent of differential delay constant  $\varepsilon$ . The result in this paper can be easily extended to time-varying delays systems.

#### 4. Pole constraint

In some case, the resulting filtering design does not present a suitable dynamical behavior. In this paper, the transient behaviors of filtering error system (5) can be improved by constraining the eigenvalues of the  $A_e$  to lie inside a given region (to ensure fast and well-damped transient responses. Because of the uncertainty existing in the error system, the pole placement in LMI regions instead of the standard pole placement, which places the poles in current dots. Define the region  $L(v, \lambda)$ , which can be disk, conic, strip. Consider  $\forall (A_0, A_1, A_2, B, C_y, D_y, C_z) \in D$ , then there exists  $P = P^T$ , such that

$$[\lambda_{i,j}P + v_{i,j}A_e^TP + v_{j,i}PA_e]_{1 < i,j < m} < 0$$
(24)

The solvability of problem  $P^{R}_{\infty}$  is dressed through the next theorem:

Theorem2: Consider a class of neutral differential system with polytopic uncertainties (3), let  $\gamma > 0$  be given. If there exist the positive definite matrices  $P_1, P_2$ ,  $Y_1, Y_3$ ,  $S_1$ ,  $S_3$ ,  $H_1, H_3$  and matrices  $M_1, M_2, S_2, Y_2, H_2$  such that the inequalities (14a,14b) and

$$\begin{bmatrix} \lambda_{i,j}P_{1} + v_{i,j}A_{0}^{T}P_{1} + v_{j,i}P_{1}A_{0} & * \\ v_{j,i}P_{2}A_{0} - v_{j,i}M_{1}C_{y} - v_{j,i}M_{2} & \lambda_{i,j}P_{2} + v_{i,j}M_{2}^{T} + v_{j,i}M_{2} \end{bmatrix} < 0$$

$$\forall (A_{0}, A_{1}, A_{2}, A_{3}, B, C_{y}, D_{y}, C_{z}) \in D$$

$$(25)$$

are hold, then the error system satisfies the bound  $||z_e||_2 < \gamma ||w||_2$  and the eigenvalues of the  $A_f$  are inside the region  $L(\nu, \lambda)$  for  $\forall (A_0, A_1, A_2, A_3, B, C_y, D_y, C_z) \in D$ . The proof follows the steps of the Theorem1 and omits.

#### 5. Example

Consider the neutral delay uncertainty system (1) with

$$A_{0} = \begin{bmatrix} 0 & 3 \\ -4 & j \end{bmatrix}, A_{1} = \begin{bmatrix} -0.5 & 0 \\ 0.2 & -0.5 \end{bmatrix}, A_{2} = \begin{bmatrix} 0.2 & 0.1 \\ 0.1 & 0.2 \end{bmatrix}$$
$$A_{3} = \begin{bmatrix} 0.1 & 0.05 \\ 0.05 & 0.1 \end{bmatrix}, B = \begin{bmatrix} -0.5 \\ 1 \end{bmatrix}, C_{y} = \begin{bmatrix} 1 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 1 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 1 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 1 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 1 \end{bmatrix}, C_{y} = \begin{bmatrix} 1 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 1 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, C_{y} = \begin{bmatrix} 0 &$$

assuring that  $j \in [-5, -7]$ ,  $\alpha \in [0.3, 0.4]$ . Based on the LMI toolbox, the optimal robust  $H_{\infty}$  filter cost achieved is  $\gamma = 2.9153$  with the solution of the inequalities of (14). The parameters of the robust  $H_{\infty}$  filter are

$$A_f = \begin{bmatrix} -207.23 & 14.076 \\ -12.595 & -5.378 \end{bmatrix}, \qquad B_f = \begin{bmatrix} 170.213 \\ 6.7205 \end{bmatrix},$$

The eigenvalues of the robust filter in  $P_{\infty}$  are given by

 $\lambda(A_f) = \{-206.3474, -6.26.1\}.$ 

Particularly dynamical behavior for filter can be obtained by imposing the poles of  $(A_f)$  to be constrained inside the some region. For example, the poles of  $A_f$  are constrained inside the s > -10. According to Theorem2 the optimal solution is  $\gamma = 121.7225$  with the filter matrices

$$A_{f1} = \begin{bmatrix} -5.514 & 1.9053 \\ -1.9191 & -8.5274 \end{bmatrix}, \quad B_{f1} = \begin{bmatrix} 3.7491 \\ -3.1304 \end{bmatrix}.$$

With

 $\lambda(A_{f1}) = \begin{bmatrix} -7.0209 + 1.1776i & -7.0209 - 1.1776i \end{bmatrix}.$ 

The smallest robust  $H_{\infty}$  guaranteed cost with pole constraint (pole place in the s > -10 region) is obviously bigger than one without pole constraint. It means the conservatism is increased by adding the pole constraint. Next consider that the poles are constrained inside an other LMI region s > -20. The optimal solution is  $\gamma = 2.9557$  with the filter matrices

$$A_{f2} = \begin{bmatrix} -11.2632 & 3.6982 \\ -1.9362 & -6.0193 \end{bmatrix}, B_{f2} = \begin{bmatrix} 9.1990 \\ -2.0140 \end{bmatrix}$$

and the eigenvalues are:

 $\lambda(A_{f2}) = \{ -8.6413 + 0.5345i, -8.6413 - 0.5345i \}.$ 

It is interesting to note that the conservatism is compensated by fitting readjusting the pole placement region.

## 6. Conclusion

The robust  $H_{\infty}$  filtering for a class of neutral delay-differential uncertain systems with polytopic type uncertainty has been addressed in this paper. An LMI-based technique for designing a robust filter assuring a guaranteed  $H_{\infty}$  performance has been proposed. Furthermore, additional pole constraints can be imposed to filtering error system dynamics in order to improve the dynamics performance of the error system. The half plane region is considered in numerical example. The results show that the approach proposed in this paper is valid.

#### Acknowledgements

This paper is supported by the National Science Foundation of China (603704027).

## References

- [1] H. Li and M. Fu. A linear matrix inequality approach to robust  $H_{\infty}$  filtering, IEEE Trans, Signal Process, Vol 45: 2338-2350, 1997.
- [2] R. M. Palhares, R. H. C. Takahashi, and P. L. D. Peres,  $H_{\infty}$  and  $H_2$  guaranteed costs computation for
- [3] uncertain linear systems, Internat. J. Systems Sci, Vol 28: 183-188, 1997.
- [4] D. Yue, S. Won, and O. Kwon. Delay-dependent stability of neutral systems with time delay: an LMI approach, IEEE Proceedings on Control Theory and Applications, Vol, 150, pp. 23-27, 2003.
- [5] J. H. Park and S. Won. Asymptotic stability of neutral systems with multiple delays, Journal of Optimization Theory and Applications, Vol 103, pp. 187-200, 1999.
- [6] Ju H. Park, Design of robust  $H_{\infty}$  filter for a class of neutral systems: LMI optimization approach, Mathematics and Computers in Simulation, Vol 70: 99-109, 2005.
- [7] Park, Ju H., Kwon, O., Lee, S. and Won, S. On robust  $H_{\infty}$  filter design for uncertain neural systems: LMI optimization approach, Applied Mathematics and Computation, Vol 159: 625-639,2004.
- [8] J. H. Park, S. Won, and O. Kwon. LMI approach to robust  $H_{\infty}$  filtering for neutral delay differential systems. Applied Mathematics and Computation, Vol 150, pp. 235-244, 2004.
- [9] Park, Ju H. and Kwon, O. On new stability criterion for delay-differential systems of neutral type, Applied Mathematics and Computation, Vol 162: 1167-1182, 2005.
- [10] J. H. Park and S. Won. Asymptotic stability of neutral systems with multiple delays. Journal of Optimization Theory and Applications, Vol 103, pp. 187-200, 1999.